Method of Group Foliation and Non-Invariant Solutions of Invariant Equations
نویسندگان
چکیده
Using the heavenly equation as an example, we propose the method of group foliation as a tool for obtaining non-invariant solutions of PDEs with infinite-dimensional symmetry groups. The method involves the study of compatibility of the given equations with a differential constraint, which is automorphic under a specific symmetry subgroup and therefore selects exactly one orbit of solutions. By studying the integrability conditions of this automorphic system, i.e. the resolving equations, one can provide an explicit foliation of the entire solution manifold into separate orbits. The new important feature of the method is extensive use of the operators of invariant differentiation for the derivation of the resolving equations and for obtaining their particular solutions. Applying this method we obtain exact analytical solutions of the heavenly equation, non-invariant under any subgroup of the symmetry group of the equation.
منابع مشابه
Method of group foliation, hodograph transformation and non-invariant solutions of the Boyer-Finley equation
We present the method of group foliation for constructing non-invariant solutions of partial differential equations on an important example of the Boyer-Finley equation from the theory of gravitational instantons. We show that the commutativity constraint for a pair of invariant differential operators leads to a set of non-invariant solutions of this equation. In the second part of the paper we...
متن کاملGroup foliation of differential equations using moving frames
We incorporate the new theory of equivariant moving frames for Lie pseudo-groups into Vessiot’s method of group foliation of differential equations. The automorphic system is replaced by a set of reconstruction equations on the pseudo-group jets. The result is a completely algorithmic and symbolic procedure for finding both invariant and non-invariant solutions of differential equations admitti...
متن کاملExact Solutions of Nonlinear Partial Differential Equations by the Method of Group Foliation Reduction
A novel symmetry method for finding exact solutions to nonlinear PDEs is illustrated by applying it to a semilinear reaction-diffusion equation in multi-dimensions. The method uses a separation ansatz to solve an equivalent first-order group foliation system whose independent and dependent variables respectively consist of the invariants and differential invariants of a given one-dimensional gr...
متن کاملGroup Foliation of Euler Equations in Nonstationary Rotationally Symmetrical Case
Euler equations for rotationally symmetrical motions of ideal fluid are considered. Basis of differential invariants for infinite-dimensional part of admitted group is calculated. The basis is used for construction of group foliation of Euler equations. Both automorphic and resolving systems are completed to involution. The resolving part of group foliation inherits finite-dimensional part of g...
متن کاملنظریه میدان اسکالر کلاسیک با تقارن همدیس و پتانسیل نامثبت
We review the conformal symmetry group and investigate the isomorphism between the conformal group and O( D,2 ) . We study the classically conformal invariant scalar theory in D -dimensions with a non-positive potential . We solve the equations of motion by assigning O(D-1, 2)symmetry to the classical solutions with broken translational symmetry in all directions. Then we consider a six d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003